flux, W/m?; @, heat-transfer coefficient, W/m? - °C;w, velocity of heat-transfer-agent flow, m/sec; d,r, equivalent
diameter and radius of channel, m;! , length of heat-transfersection, m; R, determining dimension (thickness) of all,
m; Nu, Re, Pr, Fo, Nusselt, Reynolds, Prandtl, and Fourier numbers;L, initialtemperature. distribution function;
A, E, T, dimensionless functions; C, B, constants. Indices: f, w, fluid (liquid) and wall; 0, initial value;

1, 2, heat-transfer surfaces; k, i, calculational and current time intervals.
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ALGORITHM FOR CALCULATING TEMPERATURE
FIELDS IN THIN-WALLED STRUCTURAL ELEMENTS

V. 8. Khokhulin UDC 533.24.02

An algorithm for calculating temperature fields in thin-walled structural elements is
considered which is based on the concept of local one-dimensional schemes in conjunc-
tion with graphical solution of problems in heat conduction.

In investigating the thermal regime of various structures, one often encounters the problem of calculat-
ing temperature distribution in support elements having complex configuration as a rule. To calculate the
temperature distribution in these elements, the method of finite elements, which is based on a study of the
thermal balance in the elementary volumes into which an element is divided, is the method mainly used. Cal-
culation of the thermal balances in the selected volumes is a laborious and tedious problem for which the solu~
tion is of a specific nature in each case. :

An attempt was made [1] at universalization of the methods for computing multidimensional temperature
fields in structures. The method discussed in that paper finds application in the investigation of temperature
fields of various structures whose elements are of relatively simple configuration. In the case of individual
elements of nontrivial shape, it is still necessary to use the approach of [1] to calculate the temperature fields
in such elements and this complicates the problem. In order to construct relatively simple methods for in-
vestigating the thermal regime of individual elements, this paper considers an algorithm for calculating tem-~
perature fields in thin-walled structural elements of given configuration.

Figure 1 shows individual thin-walled structural elements in which the temperature can change both along
the z coordinate and within element sections for which the z coordinate is a normal because of the thermal ac-
tion of the environment or other factors.

Before writing down the mathematical formulation of the problem, we give some definitions. Let D be
the spatial region in which the distribution of the temperature T is sought. Dj €D is a subregion of the region
D in which the temperature distribution is described by the traditional, and two-dimensional in this case, equa~
tions of thermal conductivity. In each region D; we introduce an orthogonal coordinate system (z, xj), j =1,
2,...,N. Note that the z coordinate is common to all DJ- and the Xj are parallel to any section for which z is a
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Fig. 1. Thin-walled structural elements. Fig. 2. Sequence for combining the re-

gions Dj into the region D.

normal. The subregion DC of the region D, whichis obtained by sectioning the region D by means of a plane
perpendicular to z, is called a contour of the region D. The contour D¢ shows the sequence for combining
the regions Dj into the region D (see Fig. 2). Corresponding to the contour DC, we introduce the oriented
graph G'(V) for the contour, on which the coordinate system Xj, j =1, 2, ..., N, is given. Each j-th
branch of the graph G'(V) (i.e., the corresponding subregion D ¢ D€) and the direction xj assigned on it
completely determine the coordinate Xj for calculating the desired temperature function in the region D;
G=1,2, ..., N).

We divide the set of vertices V of the graph G'(V) into two subsets: 1) the subset Vi, of boundary graph
vertices in which the heat-transfer boundary conditions between the structural element and the environment
are given, and 2) the subset V; of internal graph vertices for which thermal coupling conditions are given.

We formulate the boundary-value problem for the calculation of temperature distribution in a given
structural element in the following way with the definitions given being taken into consideration. We seek
a solution in the region D for the equation of thermal conductivity:

aT ] aT
oz x5 TVCplz, %, T) 5 g(l(z, % T) ?)

a /. aT ) .

+ Az, x5, TY——~-}8(m—1])- t oz, x,), ®
ox, ( (2 x; T) o, =i+t 2, x)

R I, =j, 2)

6(n—1)={ \

0, nj,
1. ij=12 ...,N. 3)

The initial conditions are
T(Z, xi)]’=0: To(zv xj), ]: L2, ...,N. (4)
Boundary conditions are

Az xj T)aT =@, i=L2...,N, (5)

oT ,
A x5 T)——| =gp,., BeeVp, j=1,2,...,N. )

(z Xj )anx} ij ‘qB‘J ,E g 7

The thermal coupling conditions on V; N D are
)

T (2, x;)l, = const, (¢, 2, x;),

\
}‘ Faha
k=1

oMy 8)
ot

aT
~aqv(t, 2, x,)=m,C
%, gv ( ) abp,
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Here

(ZEVH, a=l, 2,...,Nn. (9)

The source function gy ¢, z, Xp) in Eq. (1) characterizes volume heat release and also heat transfer
between the given element and the environment.

We use certain properties of local one-dimensional schemes [2] in constructing an algorithm for
solving the problem. We seek an approximate solution T for Eq. (1) at t =tx,, solving the followirg prob-
lems written in operator form sequentially along the coordinates x; and z.

Problem I
L T} 4- gy, T/€D (10
i = LuTi A-gqve Ti€D; )
Tjo="Tiw (11)
2 o) ar,; By, (12)
anx, Ty .
T}Ia = const, (¢, 2, x;), 13)
N"‘ oT
2 fira o gt 2, x) = mCo—% . (14)
dxy, ot
k=1
acV,, a=1,2,..., M, (15)
i=1,2 ..., N (16)
Problem II
11
6{';; _ ,T“ wg), T eD, (17)
TY =T} j=1,2,...,N, (18)
aT .
: . 4B, 19
on, |s, 7 19)
Here
‘7:'—:‘7}" =‘7V(t, z, xn)v n= 1' 2v e e ey N (20)

Problem I corresponds to calculation of the temperature distribution in sections of a given element
which are perpendicular to the z coordinate, i.e., to the calculation of the temperature distribution on

graphs of the contour of a given element. Temperature variation along the z coordinate is determined
from a solution of problem II.

We replace the equations in the system (10)-(16) and the equation for the problem (17)-(19) by their
difference analogs resulting from a finite-difference approximation in the space-time mesh:

oy =f{z=1h,1=0,1,2 ..., N, x; = ihy;,
i=0, 1,2 ..., Ny j=1,2 ..., N f=bh, (21)
k=1,2, ..., N},

In this case we use a two-level six-point pattern with a weight oP (p =1, II), the value of which makes it pos-
sible to use an implicit scheme for solution.

We then find that for solution of the original problem it is first nec-essary to solve in each section of
an element, i.e., for each z€oTLt, a system of N difference equations of the form

T —T,

L = AT v (22)
t
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ji=1,2 ..., N, (23)

assigned on the contour graph of a structural element with appropriate initial and boundary conditions. A
method for solution of algebraic systems of difference equations with three-diagonal matrices given on the
graph was proposed in (3] and used in [4, 5] for solution of this system. A solution of the equation system
(22) is in fact a step along the primary direction. Then for each XjE(:ht’ j=1, 2, ..., N, the difference
equation
P11 1
T] hjl" = 1\27‘:‘}I o all’l ’ (24)

j:172)"'le' (25)

is solved. Here, the traditional stepping method is used. Through solution of Eq. (24) a step is taken
along the secondary direction and finally the temperature distribution in a given element is determined.

Thus the solution of the original problem, as in local one-dimensional schemes, is reduced to a
step-by-step solution of the problem of calculating the temperature fields along each coordinate (along
each direction). In contrast to local one-dimensional schemes, however, a step along one of the directions
in this algorithm determines not merely the temperature change along one coordinate but the temperature
distribution on the graph of an element contour.

In conclusion, we briefly formulate the order of solution of the original problem.

The direction of the longitudinal z axis is selected.

The contour of an element is determined and the oriented graph of the contour constructed.
The finite-difference approximation for differential operators is realized.

_ Problem (22) for calculation of the temperature distribution on the contour of an element for each
z€wpt is solved.

Problem (24) for calculation of the axial temperature distribution in an element is solved.

Note that since the use of local one-dimensional schemes assumes equivalence in the selection of
direction, one can first consider the solution of problem (24) (step along the primary direction) and then
solution of problem (22) (step along the secondary direction).

NOTATION

T, temperature; t, time; Xjy 2, spatial coordinates; subscripts of operators corresponding to these
coordinates; n, normal; LT, parabolic differential operator; AT, finite-difference analog of LT; gy,
source function; D, region in which solution of original heat-conduction equation is sought; B, boundary of
region D, subscript for boundary of appropriate region; A, coefficient of thermal conductivity; p, density;
Cps heat capacity; ‘Bht’ space-time mesh; h, mesh step; /, contact area of joined branches (for inner

‘graph vertices); V, set of graph vertices; Vy,, setof boundary graph vertices; Vi, set of inner graph ver-
tices; N, number of branches on graph G'(V); Nj, number of inner graph vertices; N, , number of graph
branches converging at vertex a; Ny, number of mesh points in the wpt mesh in the z direction; NXj! num-
ber of mesh points in the Whi mesh on the j-th branch of the contour graph; o, weight of difference scheme;
Tj, value of grid function at time ty; Tj, value of the grid function at time tj ,; &, subscript for graph ver-
tex; j, 1, subscripts of graph fin; k, time subscript.
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RECONSTRUCTION OF LOCAL EQUILIBRIUM
TEMPERATURE FIELDS IN AN EMISSIVE MEDIUM

V. V. Pikalov and N. G. Preobrazhenskii UDC 533.9

A spectral method for determination of local temperatures in an emitting volume is discussed.
The problem of reconstruction of emissivity in the case of a medium of arbitrary configuration
is solved by regularization.

In a number of thermophysical problems, it is often necessary to determine temperature fields within
an emitting volume of plasma or of a high-temperature gas flow. The use of the methods of emission and ab-
sorption spectroscopy makes it possible to obtain the necessary pyrometric information without introducing
perturbations in the test medium. The procedure for finding the temperature T (x, y) after determination of
the emissivity e(x, y) and absorptivity ®(x, y) has been developed satisfactorily [1, 2], but generally the search
for these functions is a complex inverse problem. Actually, it is necessary to determine the coefficients of
the radiation-transport equation from values I(S) of the solution of this equation measured on the boundary of
the volume. The main results in this problem were obtained with reference to the particular case of axial sym-
metry where the problem becomes one-dimensional, If the absorptivity is negligibly small, (optically thin
layer), the problem reduces to a solution of the Abelian integral equation [1}

R
1(x)=2 [ _enrdr 1)

y orz—x2

where R is the radius of the emitting volume. However, cases with elliptical symmetry in e(x, y) can also be

reduced to such an equation. Let the orientation of an ellipse with semiaxes a and b be characterized by the
parameter t:

oy _ L )
XE ['_ a, a]v .l/E [_' b» b]’ 16 IO' a]'
Making measurements along the y axis, we obtain

b ¢ s()td a)

2V E—e
X

Ix)y=2 \g\ e(x, y)dy = 2

‘i.e., once again an Abelian equation but with respect to the isolines of an ellipse rather than a circle as in
Eq. (1), A deficiency of such a treatment of elliptical symmetry is the need for preliminary experimental
determination of the orientation of the test elliptical object in the laboratory coordinate system.

A large amount of work was devoted to solution of the Abelian equation by various methods including the
use of regularization of one kind or another [3-6]. A comparison was made [7] of a number of methods with
respect to the intensification of the experimental errors in them.

In the general case, the lack of symmetry in the problem is expressed in the form of an integral equa-
tion of the first kind: . .
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